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The dispersion of a pressure pulse in the atmosphere 

BY R. S. SCORER, Corpus Christi College, University of Cambridge 

(Communicated by Sir Geoffrey Taylor, RR.8.-Received 31 August 1949-
Revised 7 November 1949) 

The object is to find what pressure oscillations would be observed on the ground a t  a great 
distance from an explosion. The explosion is represented mathematically by a Fourier 
integral, corresponding to the introduction of a large volume into the atmosphere a t  a point 
on the ground. The resulting pulse is calculated for various distances for a model atmosphere 
consisting of a troposphere with a constant lapse-rate of temperature and an isothermal 
stratosphere. I t  is composed of those oscillations that can be propagated horizontally as 
gravity waves in this model atmosphere, namely, those of period exceeding a cut-off period 
of 111 sec. The pulse consists of a series of waves of decreasing amplitude and period, ter- 
minating with a period of 12.7 sec. 

The results are compared with the oscillations observed on the occasion of the fall of the 
Great Siberian Meteorite and the energy which it is estimated to have communicated to the 
atmosphere is about 4 x los4 ergs only a fraction of which resided in the gravity wave. 
Feglect of the warmer layers in the higher levels in the stratosphere means that the calcu- 
lated pulse terminated too soon, and a second series of waves of considerable amplitude and 
of greater frequency is completely absent. The form of these has not been calculated because 
of the prohibitive amount of computing involved. 

The problem we seek to solve is to find what pressure oscillations would be observed 
a t  a great distance from a large explosion a t  the earth's surface. The amplitude and 
form of the oscillations, when related to the magnitude and distance of the explosion, 
would then provide, on comparison with observations, an estimate of the energy 
communicated to the atmosphere by the Great Siberian Meteorite of 1908 or the 
eruption of Kraliatoa in 1883. 

In  order to render the problem reasonably simple many assumptions are made. The 
earth is assumed to be spherical and the atmosphere to be almost horizontally 
stratified-the temperature and lapse-rate of temperature and the height of the 
tropopause are therefore assumed to be uniform over the earth's surface and the 
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stratosphere to be isothermal. There is assumed to be no motion other than that -

produced by the explosion and this is supposed to take place adiabatically and to be 
of small magnitude. The actual atmosphere is thus not very faithfully simulated. but 
apart from the wind structure, which is too complex to represent anyway. it is 
apparent froin the equations that no great difference would result from these assump- 
tions except froin the neglect of the warmer layers of the stratosphere above about 
30km. These are known, from the work of Whipple (1935) and others, to reflect 
audible air waves downwards, and this fact is discussed when theory and observation 
are compared. These audible air waves were treated in terms of geometrical optics, the 
velocity of propagation being dependent only on the temperature a t  any point; the 
oscillations to be discussed here, however, are primarily gravity waves of much 
longer period than sound waves. 

The explosion causes a localized upward displacement of the surfaces of const,ant 
density which were originally horizontal, and sends out circular wave fronts in the 
same way as the intrusion of an object into the surface of static water gives rise to 
a local elevation of the surface followed by a set of circular waves travelling outwards. 
The atmosphere is a dispersive medium: the phase velocity depends upon the wave- 
length; and so it is necessary to discover first the relationship between them. That 
such a relationship exists depends upon the fact that th; horizontal and vertical 
variations of pressure (or whatever quantity is chosen to represent the disturbance) 
may be separated mathematically, and vertical wave fronts may be propagated 
horizoi~tally over the earth's surface, the amplitude and phase of the wave a t  any 
height being determined by a differential equation relating the pressure to the height 
only. To this equation the boundary conditions at  the .top' and bottom of the 
atmosphere are applied, and when this is done the required relationship between 
phase velocity and frequency is obtained. 

It then only remains to synthesize the explosion by means of a Fourier integral. 
This is in effect a boundary condition applied to the two differential equations for the 
vertical and horizontal variations of pressure, and it asserts that over a small region 
the ground rises rapidly for a short time and introduces a calculated volume into the 
atmosphere. The surfaces of constant density are suddenly distorted upwards and 
a 'pulse ' moves away radially. The waves of various frequencies composing the pulse 
are dispersed and the pulse form changes as it travels out; the pulse is observed by the 
pressure variations it produces a t  the ground, and it is these that have been calculated 
for various distances from the explosion. 

Taylor (1936) has considered the propagation of long-period waves in connexion 
with the Icrakatoa air wave; Pekeris (1937) andWilkes& Weekes (1947) discussed the 
semidiurnal pressure oscillations in terms of long waves; and later Pelceris (1948) 
discussed the propagation of a pulse taking all frequencies into account, but the 
analysis and numerical work were not pursued to predict the exact form of the ob- 
served pulse. The present method of approacll and derivation of the equations, 
though it arose out of a previous investigation (Scorer 1949), is fundamentally the 
same as that of Pelieris in the use of Fourier integrals, but differs in detail and 
technique. Finally, a new fun~t~ion had to be tabulated (Scorer 1950)before the 
int,egral giving the pulse could be evaluat,ed. 
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The values of quantities in the undisturbed atmosphere are denoted by suffix 0. 
the values a t  the ground by suffix 1, and a t  the tropopause by suffix 2. Plain letters 
are used for the disturbance; thus polis the undisturbed pressure a t  the ground, p is 
the disturbance ofdensity, etc., po+ p = density,po+p = pressure, To+ T = absolute 

temperature, r0+ r = - = reciprocal of potential temperature, 

wo+w= --- = 'modified pressure', where R is the gas constant,, 

and y is the ratio of the specific heats of air. t), $, z are the spherical polar co-ordinates 
(see figure 1) of the point where the velocity is u, v, u,.The atmosphere is assumed to 
be shallow so that a,  the earth's radius, is written for z + a,  =. being the vertical co- 
ordinate measured from a level not far from the ground. In  this co-ordinate system 

a(usin8) 2v aw
div (u,v, w) = ----+ -- +usin6a6 asint)aQ a z '  

FIGURE Systenl of co-ordinates.1. 

First, a periodic motion, with time factor eiut, is consiciered; so that a/Zt = ir, 
Having establislied equations to determine the spatial variation of the 'modified 
pressure' for a given frequency cr, Fourier's integral theorem may be used to pre- 
scribe the time variation of the spatial boundary conditions which in turn are repre- 
sented by a Fourier integral in k in a manner fully discussed later, k2is the constant 
of separation of the horizontal and vertical variations and is introduced to split up 
equation (10)below. The motion is assumed small so that products of the small 
quantities p, p,T, T,w,u, v,zu and their derivatives are neglected. The equation of 
state is assumeci, viz. 

P0+P = (Po-tP)R(To+T). 

If for the moment u-e write differentials for the disturbance we have from the defini- 
tion of m given above 

m=dw -- ('- 2)-""dp0. 
Po1 Po1 
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But 

so that 

Since the potential temperature is invariant in adiabatic motion 

where 

and for a small disturbance, a,ssuming that the horizontal variation of To can be 
ignored," this gives 

i c r r + 7;'ui = 0, ( 2 )  

where a prime is used to denote ajaz when applied to T and m, and later to ,y. 
The effect of the earth's rotation can be shown to be very small, the burden of the 

proof being that a pulse takes only a fraction of a day to pass any point on the ground. 
If it  is neglected the equation of motion is 

Taking the scalar product of this with (u, v, zu), for small motion we obtain, using (I), 

The adiabatic equation may alternatively be written 

where c2 = YET,; while the equation of continuity is 

1 D  

p o E  (po+ p )  + div (.a,v, w)= 0, 

from which p, f p  can be eliminated by (4)and then p, f p by (3) to give 

cot 6 a icr  
( T + & ) u + o s i n e a $  

* This is justified on the grounds that we are not studying the motion due to an existing 
non-horizontal stratification of potential temperature but another stnall motion which is 
superposable and can be studied independently. 
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The quantities w and T have been so defined that 

1 1 
-grad (p, +p)= ----grad (w, +w),
PO +P To +7 

and writing this into the equation of motion, for small motion, 

-
a 

(u,v,w)= --
1 

grad (a,+a)+ (0,0, -g),at T O + T  

so that, ignoring horizontal variations of w,, the first and second component equa- 
tions are 

1 aw
i ru+- -= 0, 

T,U a0 

i aw
icrv + 

sin 0 a$ - 0,~ , a  

Subtracting the hydrostatic equatioil (see footnote to preceding page) 

and substituting for T in terms of ujby means of (2) this becomes 

Equations ( B ) ,  (7)and (8)are now used to eliminate u, v, w from equation ( 5 ) ,and the 
consequent equation for the 'modified pressure' is 

It is now assuirled t,hat the atmosphere is sufficiently nearly horizontally stratified 
for the horizontal variation of T, to be ignored compared with that of w, i.e. that it 
has negligible horizontal variation in the region occupied by the pulse, then on 
multiplying by cr~ , / iequation (9) becomes 

The horizontal and vertical variations of w are thus separated, and in the particular 
case of symmetry about the co-ordinate pole fwhich will be talcen a t  the explosion) 
a/a$ = 0, v = 0, and it is permissible to write 

w w(z)3 0 ) .  
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Dividing (10) by aand then putting each side equal to k2 (since the left-hand side is 
independent of x and the right-hand side is independent of 8)we obtain 

where r ,  = a@, is the great circle distance from the pole. 
This treatment differs from earlier ones (Taylor 1936; Pekeris 1937) in taking aas 

the dependent variable in the place of the divergence of velocity. This is done because 
w is more closely related to the disturbance of pressure (equation (1)). 

If suitable boundary conditions are imposed upon a,equations (11) and (12) 
suffice to determine athroughout the whole atmosphere, and the velocity is given by 
(6) and (8)which reduce to i i3a 

u=- -
07,, a? 

io 
w = 

027,+97;)
a'. (14) 

Equation (11) is independent of the way in which 7, varies with height. We next 
derive the form taken by equation (12) in the two layers of the model atmosphere we 
have chosen. 

(a) The troposphe~e. When there is a constant lapse-rate of temperature and if the 
origin of z is suitably chosen 

To= -p ( y - 1 ) ~X ,  

YR 


and 

where p is a numerical constant. When p = 1 the lapse-rate is the dry adiabatic. I n  
the troposphere 0 ip 1.1, and on substituting for c2 and 7,and its derivatives and 
writing a= Zx, (15) 
equation (12) becomes = Sx, (16)XIf 


provided that 5= x-am (z +b)*, (17) 

where 
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and 

The quantities p, n, m, I and b are determined by the lapse-rate which determines p, 
by the constants y and g, and by a and lc which determine the frequency and hori- 
zontal wave-length of the disturbance. Equation ( 1 2 )has been reduced to the form 
(16) for purposes of numerical integration required later, so that an integration 
formula involving even differences of x and X" only can be used. 

( b )  The st~atosphe~e. The stratosphere is assurned to be isothermal a t  temperature 
T,, with c = c,, p = 0: 

( 1 - ~ ) 9
To exp (-T-Z), 

and equation ( 1 2 )reduces to 

and since the coefficients are constant, the solution is 

a and p being constants. 

Following Pekeris, we assume that all the oscillations considered, if they are to be -
set up by a source of finite energy, must possess a finite liinetic energy ill a vertical 
column of air extending infinitely upwards. If the stratosphere continues indefinitely 
upwards isothermally 

and if w, and therefore also r0uand row, is proportional to eKZ or ehz then the kinetic- 
energy density is proportional to 

The condition permits only the negative sign, and so in the solution of equation ( 2 0 )  
a = 0 , and in the stratosphere w cc eb. ( 2 3 )  
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The exponent, hz, must be real for the energy to be finite. If it  is unreal then it is 
readily shown that energy is transmitted upwards or downwards in the stratosphere; 
upwards traiismission only can occur since no means for reflexion is assumed to 
exist above the tropopause, and if energy travels upwards then the lower sign is 
again chosen, but then no oscillation could be observed on the ground a t  a great 
distance from the source. 

Free waves 

If the oscillatiorls take place over horizontal stationary ground then the boundary 

condition is 
w,= 0, and it follows from equation (14) that. a;= 0. (24) 

Equations (23)and (24) impose two boundary conditions upon the solution of (16) in 
the troposphere, for a t  the tropopause p and w are continuous, and so m and 
mf/(g~~/1r,,+a2)are continuous. But by equation (23), a t  the tropopause on the 
stratosphere side a' = h a ,  therefore bearing in niind that T;/T,, is discontinuous a t  the 
tropopause and expressing this condition in terms of X, the boundary condition a t  
x = z, imposed upon equation (16) is 

The condition on x a t  x = x,, derived from (24), is 

If n is given, then there exists a unique value of k, denoted by k*, for which both 
boundary conditions are satisfied. Since the solution to (16) cannot be expressecl in 
finite terms or in terms of tabulated functions the equation was integrated numeric- 
ally froni x = x,, the initial conditions being made to satisfy (%), making two or more 
trial values of k for a given a, and obtaining by interpolation the value of k which 
would satisfy (26). After some preliminary exploration it was found possible to 
obtain k* with great accuracy from only two trial values. 

There is,"however, one disadvantage of this method of direct integration in the 
particular case of equation (16), namely, that the coefficient X becomes infinite when 
x = -b. This happens within the range of integration for a sniall fraction of the range 
of a under investigation, and numerical integration is inipossible in and near to this 
fraction. It was therefore necessary to use Pekeris's equation (1948, p. 147, eqn. (9)) 
for the hydrodynemical divergence for one of the values of CT,and for two other values 
the values of k* already found were checked. Pekeris's equation (9) hen traiisformed 
to be suita1)le for iiumerical integration is 

where 
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and 31 is now the divergence of velocity defined by Pekeris. The boundary conditions 
are 

h being already defined by equation (21). 
The integration is slightly simpler numerically using this equation, but since the 

pressure is a function of the divergence and its vertical derivative, the results require 
more calculation to give the pulse. There is altogether nothing to choose between the 
use of Pekeris's equation and equation (12). 

5000 u2 

FIGURE2. and F ( u )as f~mctions of u2.( k * / ~ ) ~  

For convenience ( k * / ~ ) ~  was found as a function of cr2 and the results are given in 
figure 2 and table 1, for the atmosphere with the following constants: 

g = 980.6cm.~ec.-~;T,= T, = 229.53"1<; T, = 286.91°K; 

x,-2,  := 9.6137km.; y = 1.403. 

In  the numerical work the unit of length was taken as 0.9806/1.02 km.; when the 

depth of the troposphere was 10 units, g = 1.02, cz = and -1-P = 0.64424. 
P 

I n  finding k* as a function of CT for the free waves, that is, waves propagated over 
level ground, no reference is made to the form of equation (11). If in the place of a 
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spherical earth the ground had been taken as aninfinite plane and the motion assumed 
to be independent of one horizontal co-ordinate y, then (11) takes the form 

where a ~ X ( x ).a(z),  

and (12) is also satisfied. In  this case the horizontal wave-length of the oscillations is 
2n/E, and crllc* is the horizontal velocity of the free waves. The meaning of lc in 
equation (12) becomes clear only in terms of the solution of equation (11) and the 
way in which the explosive source is defined in terms of that solution. 

0.0806
The unit of length for the 2nd and 3rd columns is -- km. Three more significant figures 

1.02 
were obtained for k*/uthan are given in the table. The cut-off group velocity was obtained 
by extrapolation. 

free waves 
A. 

phase group relative 
ve1oc.-l ve1oc.-l intensity 

5000 u2 k*/c dk*/dc F(U)x lo3 

Cut-of frequency 

The k , cr plane is divided into two regions in which the condition 

is or is not satisfied. We are concerned only with the region in which it is satisfied for, 
as explained above, t,he oscillations must possess finite kinetic energy. The curve 
E = k*(a) is found to lie partly in each region. For long waves (cr = 0) it is known 
from the work of Taylor and others that there is only one value of E*, there being for 
this model atmosphere only one mode of oscillation. The present numerical explora- 
tion confirms that of Pekeris, that for each a there is only one value of k* and that 

.there is a 'cut-off' frequency a, such that only when a < a, is (28) satisfied when 
lc = E*. 

The physical meaning of this is that if they are excited by a source on the ground, 
oscillations of frequency less than cr,are reflected down a t  the tropopause, while the 
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energy of those of greater frequency is transmitted indefinitely upwards in the 
stratosphere. It is in this property that our model atmosphere differs from the actual 
atmosphere which is known to have warmer layers a t  heights above 30 km. capable of 
trapping oscillations of audible frequencies. The results derived from the long-wave 
end of the spectrum only will bear good resemblance to observations. 

It is found that the velocity crllc* of the free waves in our model atmosphere is 
equal to the velocity of sound c a t  some level in the troposphere depending upon cr. 
Their speed is slower than that of sound at  the ground but faster than that in the 
stratosphere. The actual period a t  the cut-off frequency is found to be 

It now remains only to impose a boundary condition a t  the ground which will 
correspond to an explosion. The pole (Y = 0,O = 0) of the co-ordinates is taken as the 
centre of the explosion, which is represented by an upward movement of the ground 
over a finite (or infinitesimal) region for a finite (or infinitesimal) time so that a finite 
calculable volume of ground is introduced into the atmosphere. This corresponds to 
the sudden creation of gas by high explosive, the emission of gas or steam by a 
volcano, the sudden introduction into the atmosphere of a meteorite and its aura, or 
to the sudden generation of heat which causes a large and rapid expansion. The 
essential characteristic of an explosion for the present purpose is the rapid intro- 
duction of a volume into the atmosphere, and it will be seen that provided it is rapid 
and local enough, the pulse observed a t  a great distance depends very little upon the 
exact time taken to introduce it or the horizontal extent of the source. 

We make use of the Fourier integral 

(real part only) (29) 

which, by a suitable choice of the functions C and K gives to w,a finite value near to 
r = 0, t = 0, and a negligible value elsewhere. The boundary condition (29) which 
defines the vertical velocity of the air a t  the ground thus represents a rapid, local 
elevation of the ground introducing a known volume into the atmosphere. B is 
a constant used to determine the magnitude. 

Before inserting specific functions X and K we derive the formula for the pressure 
pulse p, observed a t  the ground a t  a great distance (large r). If 

are corresponding solutions of equations (12) and (14) which satisfy the upper- 
boundary condition, then the vertical velocity a t  any height, with equation (28) as 
the lower-boundary condition, is 
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so that by equation (30) 

m = ~ J ~ ~ a o  @ 	
(31)f > C ~ ~ i k ' ( ~ i " +  e-iut)- 

w,' 

For free waves E = Zz*(a),W, = 0,@ $. 0 ,so that the integration with respect to E may 
be performed by the method of residues, k* being the pole of the integrand. The 
disturbance of pressure a t  the ground ( z  = 2,) is obtained from (31) and ( I ) ,  giving 

F being a contour in the upper half E-plane from the origin to + cobut not coinciding 
with the real axis except a t  its end-points. The first term in the bracket, though 
possibly appreciable near the source (r = 0) becomes negligible for large r on account 
of the oscillatory nature of ei" and negative real part of ikr, while K(@,/W,) is a slowly 
varying function of k for all r. For values of a which do not give a real value of k*, 
i.e. for a > a,, the value of k* has not been found, but for large r the factor eik*' 
renders the contribution to p, negligible. The first term, together with the second 
term for a > ac, represents a pulse which is perceptible a t  the ground near the source 
only, and includes the component oscillations of all those frequencies which are not 
trapped a t  the tropopause. The pulse observed on the ground a t  a great distance is 
therefore 

= 	 J - r c d a ( e ~+ e-kt) e i ~ r=jy/[!! 31 
7-01 0 aka,  k=k*' 

Now by equations (1 1) and (30) 

where 

F(a)is the relative intensity in the pulse of the component oscillations of frequency 
a ,  in the case C = K = 1.The quantity in the square bracket is evaluated numerically 
in the course of finding k* by making trial values of k2/a2 for a given n2, and F(o)is 
given in figure 2 and table 1as a function of c2.The numerical integration of equation 
(16)was performed from the tropopause downwards because i t  is required in (35)that 
X, shall arise from a function @, given by (30), satisfying the upper-boundary con- 
dition. We now have 

p, = tnpO, B J I ~ F B ~ ~ *  efi"p( eiut + eciUt) da,  

which gives p, as a function of r and t. 

The succeeding section discusses some particular forms of C and K 
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The region over which wl i.0 is only a small fraction of the earth's surface, and can 
be considered flat; so that analytically the source has the same form as if it  were on an 
infinite plane earth. In  such circumstances if the oscillations were independent of the 
horizontal co-ordinate y, an instantaneous line source such that w, is zero a t  all points 
except x = 0 and a t  all times except t = 0, but is integrably infinite a t  x = 0, t = 0, is 
represented by equation (29) with 

giving w, = 2BIomcosotdoIowcos kxdk, (38) 

pl  = trip,lB/ 
uc 
F(o)e'k*~(e'ut +eciUt)d a  (real part). 

0 

It may be noted that cos kx is a solution of (26), 2nlk is the horizontal wave-length and 
alk the horizontal phase velocity of the component oscillations. 

When r is small equation (11)becomes Bessel's equation of zero order, and an 
instantaneous point source a t  r = 0, t = 0 is represented by the well-known integral 
(used by Pelceris) r w r m  

wl = ~ B Jcos d d a j  Jo(kr) kdk. 
0 0 

The volume introduced is 

(Lamb 1932, art. 102) and 

pl  = ~ ( o )~ 7 r p n lBJ Jo(k*r) k*(eut+ e-kt) da. 
0 

Here K eib in (29) has been replaced by J,(kr) k, and the argument used to dispose of 
the first term in (33) is valid because the Bessel function oscillates like the cosine. 
When r is sufficiently large, either the integrand is negligible because k* is small when 
o is near to 0 or else Jo(k*r) may be replaced by its asymptotic form, giving 

However, when r is large, Bessel functions are no longer solutions of equation (1 1) 
and it is therefore necessary to replace r-* by (asin 0)-*,thus substituting theasymp- 
totic form of the solution of equation (1 1) (Jeffreys& Jeffreys 1946, art. 24.15) for the 
asymptotic form of the Bessel function. The factor k** means that as compared with 
a line source, a point source favours the shorter wave-lengths. The form taken by (42) 
on a spherical earth is obtained by putting into the expression (36) the values 

This is the form of source for which the pulse form a t  various distances has been 
calculated. The modification required when the source is diffused in space or time is 
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illustrated by three examples, in each of which the relative intensity of that part of 
the pulse due to the longer waves is increased. It is reasonable to suppose that this 
would be the effect of most kinds of spreading of the source in space or time. Since the 
longer waves travel faster the effect is simply to intensify the earlier part of the pulse 
at  the expense of the later part. 

(a) A source of intensity gradually increasing to a maximum a t  t = 0 and then 
dying away, the strength a t  time t being proportional to U/(U2 + t2), which is the real 

part of 1,"e-"u+i"tdo, is obtained by putting X e - ~ ~ ,= where U is a constant, being 

the time taken for the source to decrease from its maximum to half its maximum 
strength. 

(b) If the intensity is proportional to cos st in -nj2s < t < n-/2s and is zero a t  all 
other times, we write 

X=- 2s 
COS 

710-
-. 

s2- o2 2s 

This again is a decreasing function of a when o is positive. 
( c )  If instead of a point source the intensity is uniform inside r = b and zero 

outside we find (cf. Lamb 1932,art. 102) that it is necessary to write 

2 2 .L 
K = -Jl(kb) ------- e-tinn-b (kna sin S) 

which multiplies the factor given in (43) by 2J1(kb)/kb. The relative intensity of the 
long waves is again increased. 

In  these instances the constants U ,s and b must be chosen so that C and R* are 
slowly varying functions of o, as is P(a) ,  for upon that fact depends the method of 
evaluating the pulse numerically. 

It is necessary to describe only briefly how the method given elsewhere (Scorer 
1950)was used Lo evaluate the integral (36). 

Henceforth we write k for E*: I< for K*, and k' for dk*/do. 
It became evident as the values of k2/(r2 were found, and plotted against c2, that as 

o-t 0 then k" -+0 also, and application of the principle of stationary phase, suggested 
by Pekeris for this problem, could not be made in the usual way,? for it is only 
justifiable if 

I JC"' I < < I k" I * .  (46) 

But since kiV+ 0 as o+0, the method is adequate if Ex - rrt is expressed as a cubic in c 
instead of the usual quadratic. 

Thus if k(o,) = k, is the solution of 

As given, for instance, in Lamb (1932, art. 241). 
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(k'z+ t = 0 has in the present case no solution, so that the term in eiut has no point of 
stationary phase and is therefore neglected), and 

k = Lo+ (a-a,)k; + $(a-a0)2ki+ &(a-a0)3kl//, (481 

then kx-at = a+ba+ca2+da3, (49) 

where 

Thus, given x, by (47),cr,is a function oft, and following the method given by Scorer 
(1950) we obtain 

I = 
77
- ~ ~ o ~ o ~ o e x p { ( i ( a - ~ ) _ ) j ~ ( t ) ,I 

which gives I as a function of a, and therefore o f t  for a given x, where 

and L(z) = Ai (z) + i Gi (z) 

=: 11m exp {i(uz + &u3)) du. 
77 0 

Tables of Ai (2) are given by Miller (1946) and of Gi (2) by Scorer (1950). 
To evaluate the derivatives of k most accurately by numerical methods we write 

and obtain 

k/a = v*, 

k = av*, 
E' = V*+ a2T7-*V', 


kN= o-V-4(3 V' -a2V-1V12 + 2a2VB}, 


k" = - + a2V'V")+ 3a4V-2V'3).
V-*{3V1+ 12a2V"+ 4a4VJN ~ I T ~ V - ~ ( V ' ~  

V', V", V"' were obt,ained by numerical differentiation of V(a2). This procedure, 
though most undesirable from the computation point of view, was unavoidable, but 
the higher derivatives of V only made small contributions in the formulae (55). This 
was the main reason for calculating k2/a2 a t  equal intervals of a2,  for thereby a very 
smooth function is obtained. 

Equations (47)and (51) were then used to obtain I and thereforep,, as a function 
of t  for certhin chosen values of r. 
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The pulses to be observed at five different great circle distances from the explosion 
are given in figures 3 to 7. The units of pressure are microbars (dyne crn.3) per cu.km. 
of explosion. If all the energy to cause the expansioll were supplied as heat the amount 
per cu.km. would be approximately 3.8 x 1021ergs, independent of the volume to 
which the heat is applied, assuming that the heating took place a t  constant pressure. 
If the volume is introduced mechanically the energy required depends very much 
upon the rate of introduction, but it is probably of the same order of magnitude as if 
the energy is supplied as heat if the expansion is rapid enough to be termed an 
explosion. I)etlails of these calculated pulses are given in table 2, the time zero in each 
case being placed at the time of arrival of long waves. The time of cut-off is the time of 
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FIGURES3 to 7. The pulses a t  five different great circle distances from the explosion. 

arrival of waves travelling with the group velocity corresponding to the cut-off 
frequency. The amplitude of the first five half-oscillations is the difference in pressure 
between successive stationary values. Only in figure 3 is the complete pulse form 
given; in the other cases the oscillations continue with decreasing amplitude and 
increasing frequency to a period of 12.7 see. a t  the cut-off time. The form of the pulse 
before the first crest is uncertain for the stationary phase method is inadequate near 
a, = 0 because the factor kt in the integrand is rapidly varying near k = 0; but in any 
event, an instrument recording the pulse would be fitted with some form of leakage so 
that slow changes in pressure are not shown. Thus the first crest is probably too low 
on the microbarograph traces for the English stations shown with fourfold magnifica- 
tion in figures 8 to 1 1. The rise in pressure from the first trough to the second crest has 
been taken as well as the fall from the first crest to the first trough when theory and 
observation are compared to give an estimate of the volume of the explosion of the 
Siberian meteorite, except in the caseof stations around 970 km. distant when the fall 
from the first crest to the first trough only is taken. In  table 3 are briefly set out the 
characteristics of the best available observations. The Siberian stations were twelve 
in number ranging from 660 to 1230 km. distant. The average distance was 990 km. 
The pressure-pulse amplitude varied from 0.40 to 2-45and was not well related to the 
distance. This information is given in the paper by Astapowitsch (1934),whence also 
figure 12 was taken, showing the pulse observed near Leningrad. 

There appears to be a loss of well over half the energy of the pulse between the 
Siberian and English stations. This may be attributed to various causes besides 
mechanical dissipation; the prevailing wind and temperature regime may cause 
refraction and distortion of the wave fronts; and the siting of the station relative to 
these and to mountain ranges may influence the pulse received. An expansion of 
1000 cu.lim. would be caused by 3.8 x loz3ergs if all the energy were supplied as heat, 
whereas no previous estimate of the energy exceeds 5 x 1021 ergs. 
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In  this estimate we have calculated the energy required to be supplied as heat in 
order to produce the observed pulse, but only a fraction of this energy passes into the 
kinetic energy of the pulse. The energy of all those component frequencies for which 
cr > cr,escapes into the upper stratosphere and is dissipated by viscosity. Work must 
be done merely to introduce the volume: approximately ergs would be required 
to introduce 1000 cu.km. so slowly that no pulse were created a t  all. Previous esti- 
mates, summarized by Astapowitsch, of the energy depend on calculating the energy 
of the air wave or the work done in felling the observed number of trees, that is, the 

FIGURE8. . 
Neteorological 
Office. 

FIGURE 9. 
Reading. 

30 min. 

FIGURE1 1. 
FIGURE10. South 
Petersfield. Kensington. 

FIGURE12. Diagram of record of air waves caused by the explosion on the occasion of the 
fall of the meteorite on 30 June 1908 according to the records of the Sprung microbaro- 
graph at  the Slutsk Geophysical Observatory near Leningrad. 

energy required for one of the many phenomena produced, but no estimate was made 
of what proportion of the total energy was expended upon it. Alternatively, they 
depend upon comparison with the Krakatoa eruption for which no more reliable 
estimate exists, or with earthquakes. We are concerned here with the total amount of 
energy communicated to the atmosphere; and since the energy of the earthquake 
shock must be added to this i t  appears that the great magnitude of the phenomenon 
has not hitherto been appreciated. 

The time interval between successive nodes is not in good agreement with obser- 
vation. The atmosphere on the occasion seems to have been more dispersive than the 
model chosen, but even so no explanation is offered as to why the oscillations a t  
Leningrad should have been slower than those observed in England. 

Figure 13 sliows, in an enlarged scale, the form of the pulse observed in England. 
It was derived by Whipple (1930)from six microbarograms, four of which are given 
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in figures 8 to 11. The sudden and more rapid oscillations which are completely 
absent from the calculated curves may reasonably be supposed to be due to the warm 
layers above 30 km., ~vhich have not been taken into account. Whipple remarks that 
these waves travelled considerably faster than the sound waves known on occasions 
to have been reflected by these layers, but then only a single reflexion took place, and 
the height of reflexion was a considerable fraction of the distance between the 
explosion and the observer; the propagation was thought of in terms of rays of sound 
which were inclined to the ground. The oscillations which are observed at a great 
distance may not legitimately be studied by geometrical optics which is suitable for 
high-frequency oscillations only; gravity now becomes all important, and the wave- 
fronts are vertical; the path of a wave-front element from the region of the explosion 
to the observer is horizontal, and it is not surprising to find a greater horizontal 
component to the velocity of propagation than in the case of a single reflexion at high 
levels. The labour involved in the nunierical work necessary to study this has so far 
been prohibitive. All that can be concluded on the basis of the present work is that 
this sudden, second, set of oscillations was probably not due to a separate explosion 
because a t  such a great distance the pulses for two separate explosions would be 
identical in form. 

The kinetic-energy density of the free waves dies away exponentially upwards in 
an isothermal stratosphere when o<oc, but dies away more slowly as o increases 
until a t  o = ocit is constant a t  all heights; F(g)therefore decreases to zero as a 
increases to a,,,for a t  CT = octhe energy of the oscillations is infinite unless the ampli- 
tude is zero. If the warmer layers a t  higher levels were taken into account then the 
cut-off would not occur until a higher value of CT were reached; therefore F(o)would 
assume a greater value for those frequencies which make up the later part of the 
calculated pulse, and the amplitude of the oscillations would die away less rapidly. 
This may, in part, explain the difference in form between the calculated and observed 
pulses. No such ready argument has been found to deduce the effect of the warm 
upper layers of the stratosphere on the period of the oscillations in the later part of the 
pulse. 

100 

0 

-100 

5.0 G.M.T. 5 10 15 20 30 35 5.40 

Comparison with the Krakatoa air wave is difficult because there was probably not 
a single sudden explosion, nor were instruments set up capable of displaying the more 
rapid oscillations. There was undoubtedly one explosion greater than the others, but 
the others were great enough to produce observable pulses. The interval between the 
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explosions was of the same order of magnitude as the time taken for one pulse to pass 
a distant point, so that the separate pulses interfered. The best observations were, 
furthermore, made a t  stations of very different latitude from each other and from the 
eruption, so that the pulse form would be distorted by passage through regions with 
large variations in wind and temperature structure. 

Finally, two remarks may be made concerning the calculated pulse form. The local 
period of oscillation a t  any part of the pulse does not correspond to the period of the 
waves, travelling with the group velocity and arriving a t  that instant. The cut-off 
frequency has a period of 111.28 sec. which is nearly ten times the period of the oscil- 
lations a t  the termination of the pulse. Pekeris found a cut-off period of about 2 min. 
for a slightly different model atmosphere. 

I t  has been assumed that propagation takes place without loss of energy, and the 
amplitude at 7691 km. (figure 6) is smaller than at 13290km. (figure 7)  because the 
wave front in the former instance is extended round an equatorial belt (the explosion 
being taken as pole). It contracts subsequently to a small zone of higher latitude and 
the amplitude increases. 

The author wishes to thank Professor Sir Geoffrey Taylor, F.R.S., for fundamental 
discussions on the problem, Dr M. V. 'CVilkes for advice on the numerical work, and 
Miss C. M. Munford for assistance with the computation. The Royal Meteorological 
Society has kindly given permission for the reproduction of figures 12and 13;and the 
author is indebted to the Director of the Meteorological Office for the loan of original 
microbarograms and to the Controller of His Majesty's Stationery Office for permis- 
sion to publish enlarged copies of some in figures 8 to 11.These microbarograms are 
Crown copyright. Thanks are also due to the Ministry of Education for a Further 
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