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Abstract: The Tunguska explosion occurred in the morning of June 30, 1908, in 
Central Siberia, some 800 km NNW from Lake Baikal. It devastated the forest area 
of 2150 km2, flattening and scorching some 30 million trees. Before this, a 
luminous body flew overhead in the cloudless sky. The air waves from the 
explosion were recorded as far as in London. The object that flew that morning 
over Siberia is usually designated as the Tunguska meteorite or – more cautiously – 
the Tunguska space body (TSB). Certainly, this body was dangerous: the taiga was 
leveled over an area twice as large as New York City. The whole number of 
Tunguska hypotheses reaches a hundred, or so. But few of them have been built 
according to the standards of science and with due consideration of empirical data. 
There is also a serious methodological problem that is, as a rule, overlooked: the 
need to take into consideration all empirical data and to reconstruct the Tunguska 
event before building any models of it. Such a reconstruction is essential – since the 
consequences of this event are many and varied. The main Tunguska traces may be 
grouped and listed as follows: (a) material traces; (b) instrumental traces; 
(c) informational traces. To be sure that a proposed theory is correct, the scientist 
must check it against all the three types of Tunguska evidence. Having 
reconstructed the Tunguska event with due attention to all the evidence, we have to 
conclude that it could not have been an asteroid or a comet core. There seems to 
exist in space another type of dangerous space objects, whose nature still remains 
unknown. 
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I. Introduction 

In the morning of June 30, 1908,  a fiery body flew over the wastes of Central 
Siberia. It was clearly seen by inhabitants of the settlements situated on the banks 
of the Angara, Yenissey and Lena rivers, as well as by Tungus nomads in the taiga. 
The body’s motion through the atmosphere was accompanied by thunderous 
sounds.  

The strange visitor from space ended its flight path in a powerful explosion 
over the so-called Southern swamp, a small morass not far from the Padkamennaya 
Tunguska river. The coordinates of this location are: 60° 53′N & 101° 54′E. This 
airburst devastated about 2,150 km2 of the taiga, flattening some 30 million trees. 
Over an area of 200 km2 vegetation was burnt, which seems to be indicative of a 
powerful flash of light. (For details see: Vasilyev 2004; Rubtsov 2009; Rubtsov 
2012.) 

Some years later, the object that had exploded in June 1908 in Siberia was 
designated  as the Tunguska meteorite. Whether or not this was a meteorite in the 
strict sense of this word still remains unknown. It would therefore be more correct 
to call it the “Tunguska space body” (TSB). The moment of the Tunguska 
explosion has been determined with an accuracy of 10 sec. It occurred at 0 h 13 
min 35 sec (± 5 sec) GMT (Pasechnik 1986:66). The accuracy of determination of 
the altitude of the explosion is not so good, but it is generally agreed that it was in 
the range from 6 to 8 km. But as for the total energy released at Tunguska, here the 
discrepancy between various estimations reaches more than two orders of 
magnitude: from 1.5×1016 J (Boslough and Crawford 2008) to 2.9×1018 J (Turco et 
al. 1982). 

The main hypotheses proposed since 1927 to explain the Tunguska event can 
be listed as follows: 

1. It was the arrival of a huge iron meteorite that broke into pieces high above 
the Earth’s surface. Its large pieces and “a fiery jet of burning-hot gases” 
struck the surface and leveled the trees (Kulik 1927).  

2. The impact of a huge iron or stony meteorite (Krinov 1949).  
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3. The forest devastation in the Tunguska taiga was caused by the bow wave 
which accompanied the meteorite flying in the atmosphere and hit the ground 
after the meteorite had been disrupted by the forces of air resistance 
(Rodionov and Tsikulin 1959). 

4. Thermal explosion of the icy core of a comet (Krinov 1960). 
5. A lump of “space snow” of extremely low density that completely collapsed 

in the atmosphere. Its bow wave leveled the taiga (Petrov and Stulov 1975).  
6. The fast fragmentation of a stony asteroid or a comet core (Grigoryan 1976). 
7. Low-altitude airburst of a swiftly moving stony asteroid (Boslough and 

Crawford 2008). 
8. Vapor cloud explosion of a comet core (Tsynbal and Schnitke 1986). 
9. Chemical explosion of a fragment of Comet Encke that was caught by the 

gravitational field of the Earth and made three revolutions around it, after 
which it entered the atmosphere and evaporated, forming an explosive cloud 
over Tunguska. Then the cloud detonated (Nikolsky, Schultz, and Medvedev 
2008). 

10. Annihilation of a meteorite consisting of antimatter (La Paz 1948). 
11. Natural thermonuclear explosion of a comet core (D’Alessio and Harms 

1989).  
12. Nuclear explosion of an alien spacecraft (Kazantsev 1946). 

Each of these hypotheses meets with considerable difficulties when trying to 
account for all peculiarities of this phenomenon, and therefore science does not 
possess as yet the correct theory. 

II. Methodology of the Investigation 

The primary problem with the conventional interpretation of the Tunguska 
event is that there is no trace of either asteroidal or cometary material at the site of 
the explosion. Usually, authors of Tunguska hypotheses pay careful attention to this 
fact and try to build a mechanism explaining it, with varying degrees of success. 
But there is also a serious methodological problem that is, as a rule, overlooked: the 
need to take into consideration all empirical data and to reconstruct the Tunguska 
event before building any models of it. Such a reconstruction is essential – since 
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the consequences of this event are many and varied. Meanwhile, more often than 
not, it is only some general characteristics of the leveled forest area that are taken 
into consideration when trying to find an explanation for the Tunguska event. There 
are, however, other traces of this event that should not be ignored. The main 
Tunguska traces may be grouped and listed as follows: 

A. Material traces. 
B. Instrumental traces. 
C. Informational traces. 

To be sure that a proposed theory is correct, the scientist must check it against 
all the three types of Tunguska evidence. 

A. Material Traces 

(1) The leveling of trees over a butterfly-like area 70 km across and 55 km 
long – the so-called “Fast’s butterfly”. Over this area, trees are lying mainly in a 
radial direction, although there are some slight deviations from this pattern. Its axis 
of symmetry runs at an angle of 115° to the east from its geographical meridian 
(Fig. 1, line A-B). Along this line the lying trees demonstrate a feeble herring-bone 
pattern reflecting the action of the bow wave of the TSB on the forest.  Because a 
bow wave travels symmetrically relative to the flying body’s trajectory, this axis is 
in fact the projection of the trajectory.  It attests that at the final stage of its flight 
the TSB was flying over the area of forest destruction in just this direction – that is, 
from the east-south-east to the west-north-west. The true azimuth of its flight 
direction was 295° (Fast 1967:60). 

In the middle of the 1970s W. G. Fast and his colleagues, having studied 
additional data on the leveled forest collected in the field, concluded that there 
existed another belt of fallen trees showing a feeble herring-bone pattern and 
running at an angle of 99° to the east from its geographical meridian, that is 
practically from the east to the west (Fig. 1, line C-D).  The true azimuth of the 
TSB’s flight direction must therefore have been 279° (Fast, Barannik, and Razin 
1976:48.) At the same time, Fast did not repudiate his earlier result. Hence, the 
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pattern of forest destruction at Tunguska is quite complicated, suggestive of the 
effects of both a blast wave and two bow waves. 

 

FIG. 1. The “Fast’s butterfly”: the outlines of the leveled forest at 
Tunguska, 2150 km2 in size. Lines A-B and C-D designate the first and 
second TSB trajectories determined by W. Fast. Based on: (Boyarkina et 
al. 1964:127).    

Quite remarkably, there is an area of about 8 km in diameter, at the epicenter 
of the explosion, where trees were scorched and devoid of branches, but remained 
standing upright like telegraph poles. The “telegraph-pole” phenomenon points to 
the effect of a blast wave, with its origin at a height of 6 to 8 kilometers. Also, a 
trace of the bow wave in the leveled forest extends westward beyond the epicentral 
zone, which can mean that a fairly massive body flew westward after the explosion 
(Plekhanov and Plekhanova 1998).  

(2) The zone of the light burn of trees (Fig. 2) is also “butterfly-like” in 
shape, its axis of symmetry running from the east to the west. It extends up to 16 
km to the east from the epicenter, with two separate zones being noticeable within 
it: the zone of intense burns and the zone of weak burns.  Theoretically, traces of 
severe burning must have remained at the center of this figure and those of weak 
burning at its periphery. In reality the picture looks more complicated: the zone of 
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weak burning extends from the east into the zone of severe burning; and along the 
axis of symmetry the burning is considerably weaker than that at a distance from it.  
But at the very center of the figure there is evidence of the maximum level of the 
light flash. 

 

FIG. 2. Outlines of the Tunguska burned area from the light flash. Source: 
(Zhuravlev and Zigel 1998:103). 

Having examined the traces of burning, V. K. Zhuravlev (1967) calculated 
that the heat radiation from the light flash, in the overall radiation of energy from 
the explosion, was not less than 10% and perhaps even 25% of the total energy 
released. It was therefore not only a high-altitude explosion but also a high-
temperature one. Of course, for a high-temperature explosion of a comet core or 
stone asteroid the small cosmic body must have moved through the atmosphere at a 
great velocity (tens of kilometers per second). 

(3) Are there any material remnants of the TSB substance at Tunguska?  
Although some silicate and metallic (containing cosmochemical elements – nickel, 
iron and cobalt) spherules some 100 μ in diameter were discovered in Tunguska 
peat and soil, the number of these spherules is much too small even for an icy 
comet core, to say nothing about a stony asteroid. The overall mass of space matter 
spread over Tunguska in 1908 was a few tons at best (Vasilyev 1986:6). But a 
powerful explosion of the comet core entering the Earth’s atmosphere could have 
happened only if both its mass and velocity had been very considerable. According 
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to well-justified estimations, the mass of the hypothetical Tunguska comet could 
not have been less than 106 T (Fesenkov and Krinov 1960:35) or even 107 T 
(Tsynbal and Schnitke 1986:102). Most probably these microscopic spherules were 
due to the usual background fall of extraterrestrial matter.  

Meanwhile, some local geochemical anomalies have been discovered at the 
epicenter of the Tunguska explosion. The soil and peat are enriched with rare earths 
(samarium, europium, terbium, ytterbium, yttrium, etc), as well as with barium, 
mercury, copper, titanium, zinc and some other elements (Golenetsky and Stepanok 
1980:113; Dmitriev and Zhuravlev 1984:34). Besides, the ratio of rare earth 
elements had been sharply disrupted. Particularly, the contents of terbium exceeds 
the norm by 55 times, that of thulium by 130 times, that of europium by 150 times, 
and that of ytterbium by 800 times (Dozmorov 1999).   

 

FIG. 3. Pattern of ytterbium’s distribution at Tunguska following the 
projection of the first TSB trajectory determined by W. G. Fast. Source: 
(Zhuravlev and Demin, 1976:101).  

Patterns of similar shapes have been formed at Tunguska for the surface 
distributions of lanthanum, lead, silver and manganese, but for iron, nickel, cobalt 
and chromium, the patterns of their distribution had no association with any special 
points or directions of the area of leveled forest, indicating that these elements were 
natural components of the soil and rocks. This can mean that cosmochemical  
elements – iron, nickel, cobalt – have nothing to do with the Tunguska space body. 
Instead, it is primarily ytterbium which can be reliably associated with the TSB. 
Also, possibly lanthanum, lead, silver and manganese (Zhuravlev and Demin 
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1976:102). With this composition, it could hardly have been an asteroid or a comet 
core.  

(4) A complex set of serious ecological consequences has been revealed in 
the region of the explosion. These are: first, a very fast restoration of the forest after 
the catastrophe and accelerated growth of trees, both young and those which 
survived the incident (Nekrasov and Emelyanov 1963; Emelyanov et al. 1967); 
second, a sharply increased frequency of mutations in the local pines (Plekhanov et 
al. 1968; Dragavtsev et al. 1975). There was also discovered a rare mutation among 
the natives of the region, which arose in the 1910s in one of the settlements nearest 
to the epicenter (Rychkov 2000).  

 

FIG. 4. A section of a larch that survived the 1908 disaster. Its rings after 
1908 are noticeably wider than before. Credit: Vitaly Romeyko, Moscow, 
Russia. 

(5) The presence of feeble but noticeable radioactive fallout after the 
Tunguska explosion is an empirical fact, confirmed by finding the peaks of 
radioactivity dated 1908 in trees that had withered before 1945 (that is, before the 
year when nuclear tests in the atmosphere started and the artificial radionuclides 
began to fall from the sky in plenty). Only the increased radioactivity of the 
samples taken from the trees that continued their growth after this year may be 
explained as contamination from contemporary nuclear tests (Mekhedov 1967; 
Zolotov 1969). Note that the problem of Tunguska radioactivity was studied not by 
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amateurs, but by the most distinguished Russian radiochemists, in particular by 
Professor Boris Kurchatov, the father of Soviet radiochemistry, and his close 
associate Dr. Vladimir Mekhedov (see: Vasilyev and Andreev 2000).  

(6) Within 10 to 15 kilometers from the Tunguska epicenter the level of 
thermoluminescence (TL) of local minerals considerably exceeds the background 
level. The zone of the increased TL level has an axis of symmetry running almost 
directly from the east to the west. “Formerly we were calling the factor which had 
stimulated thermoluminescence at Tunguska somewhat too cautiously ‘unknown,’ 
but now it’s time to tell that we cannot see any rational alternatives to identifying 
this with hard radiation” (Bidyukov 2008:83).  

The traces 4, 5 and 6 seem to indicate that the Tunguska explosion was 
accompanied by hard radiation. 

B. Instrumental Traces 

(7) The Tunguska explosion left records of its seismic waves on the bands of 
seismographs in Irkutsk, Tashkent, Tbilisi and Jena.  

 

FIG. 5. The seismogram of the Tunguska earthquake of June 30, 1908 
recorded by a seismograph of the Irkutsk Magnetographic and 
Meteorological Observatory.  

In 1976, the leading Russian specialist in monitoring foreign nuclear tests 
Professor I. P. Pasechnik was asked by the Committee on Meteorites of the USSR 
Academy of Sciences to determine the magnitude of the Tunguska explosion. He 
examined in minutest details these seismograms and concluded that the most 
probable magnitude of the explosion was 30 to 50 megatons (Pasechnik 1976:51). 
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(8) Also, microbarographs in Russia and in Britain have recorded  
infrasonic waves of the explosion at Tunguska. 

 

FIG. 6. Comparison of microbarograms of a nuclear, non-nuclear and 
Tunguska explosions. Source: (Zolotov 1969:150). 

Attempting to explain the Tunguska explosion, authors of various hypotheses 
have used almost all known types of explosions: physical (impact, thermal, and 
dynamical, such as the swift fragmentation of the meteor body); chemical, 
including the vapor cloud explosion; and nuclear (fusion, fission, and antimatter 
annihilation).  It is known that the nuclear explosion differs from all other types of 
explosion by its much greater concentration of energy (around 8.4×1010 J/g and 
4.2×103 J/g, respectively.) Thus, according to the concentration of energy all 
explosions may be separated into two groups: nuclear (having a high concentration 
of energy) and non-nuclear (having a low concentration of energy).  

“Signatures” of nuclear and non-nuclear explosions on microbarograms are 
radically different. The most evident difference between them lies in the shape of 
the curve. The microbarogram of an explosion having a low (“non-nuclear”) 
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concentration of energy looks like a wave whose amplitude and period remain 
practically constant. Yet, for an explosion with a high (“nuclear”) concentration of 
energy the curve on the tape of a microbarograph will be different: with time both 
the amplitude and the period of this wave swiftly diminish. It is thanks to these 
characteristics of air waves that specialists monitoring nuclear tests can say 
immediately, not awaiting for information about nuclear contamination of the 
atmosphere, whether a powerful explosion detected by their instruments at a distant 
region of our planet was nuclear or not (Pasechnik 1962). 

Let’s look at Fig. 6, where microbarograms of a powerful chemical explosion 
are represented (a) and a nuclear explosion with magnitude of several megatons 
that was carried out at a US testing ground on Marshall Islands in 1954 (b). A third 
curve (c) is a record of air waves from the Tunguska explosion.  The recording was 
made in 1908 in London.  One can see that the curve c is very similar to the curve 
b, bearing at the same time no resemblance to the curve a. Hence, A. V. Zolotov 
concluded that “the explosion of the Tunguska space body had a very high 
concentration of energy in a small volume” (Zolotov 1967:2094). Later, Pasechnik 
confirmed Zolotov’s conclusion about the high concentration of the energy of the 
Tunguska explosion (Pasechnik 1976:51). 

(9) Minutes after the explosion a magnetic storm began, that lasted some five 
hours. This storm was detected only by the Magnetographic and Meteorological 
Observatory in Irkutsk. No other magnetometric station on this planet had detected 
it  (Ivanov 1964:144). 

 
FIG. 7. The local geomagnetic storm, dated June 30, 1908, as recorded by 
instruments of the Magnetographic and Meteorological Observatory at 
Irkutsk. Source: (Ivanov 1961).   
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During 7 hours before the explosion of the Tunguska space body, the 
geomagnetic field was very calm. At 0 h 20 min GMT, that is 6 min after this body 
exploded, the intensity of the geomagnetic field abruptly increased by 4 nT and 
remained at that level for about 2 min.  This was the initial phase of the local 
geomagnetic storm (called the “first entry”). Then started a second phase – “the 
phase of rise.” In the course of 18 min it rose for 20 nT more. The geomagnetic 
field reached its maximum intensity at 0 h 40 min GMT, and remained at the same 
level for the next 14 min. It then began to drop, the amplitude decreasing by some 
70 nT.  It returned to its initial undisturbed level only 5 hours later. Such effects 
have never been observed by astronomers studying meteor phenomena – neither 
before nor after the Tunguska event. The only parallel for this was the artificial 
geomagnetic storms that occurred during the high-altitude nuclear tests (Ivanov 
1964:145; Zhuravlev 1998:9). 

The separate stages of such storms lasted 10 to 20 min, and the intensities of 
the geomagnetic field reached 50 nT. These local geomagnetic storms were first 
recorded in August 1958, when thermonuclear charges of some 4 Mt in magnitude 
were detonated over Johnston Island at altitudes of 76 and 42 km (Matsushita 1959; 
Mason and Vitousek 1959). As it was soon established, this effect was generated by 
hard radiation from the fiery ball of the high-altitude nuclear explosion (Leypunsky 
1960). Under the influence of this radiation, the level of ionization of the 
ionosphere increases sharply, there appear in it electric currents, and a magnetic 
disturbance occurs.  

Great pains were taken to explain the Tunguska geomagnetic storm, while not 
referring to the nuclear model of this event – particularly, via the action of the blast 
wave or the bow wave from the flying TSB on the ionosphere. None of these 
attempts were successful (Zhuravlev 1998). The proposed non-nuclear mechanisms 
were especially ineffective when trying to explain the long duration of the 
Tunguska geomagnetic storm and the fact that it was a very local effect. In 2003, 
speaking in Moscow at “The 95th Anniversary of the Tunguska Problem” 
conference, K. G. Ivanov agreed that the blast wave in itself could not have 
produced the geomagnetic effect. Additional ionization of the ionosphere over the 
place of the explosion was necessary for that (Ivanov 2003).  
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C. Informational Traces 

(10) Certainly, material and instrumental traces are the primary ones. But 
Tunguska eyewitness reports should not be ignored either. “If we are trying to 
unveil the real Tunguska mystery, and not just solve an abstract mathematical 
problem, we must reject those solutions which are inconsistent with observational 
data” (Bronshten 1980:161). These reports can be considered as boundary 
conditions for the “Tunguska theories”. If a theoretical model goes beyond these 
boundaries this means it has nothing to do with the real Tunguska phenomenon.     

The total number of eyewitness testimonies is about 700 (Vasilyev et al. 
1981). The TSB was seen at a distance of up to 1000 km from the place of its 
explosion. There are two main areas of eyewitness reports:   

 

FIG. 8. The southern (S) and eastern (E) sectors, from which came reports 
of eyewitnesses observing the flight of the Tunguska space body 
(Rubtsov 2012:221).   

Data obtained inside each sector made it possible to create a statistically 
reliable and coherent image of the Tunguska phenomenon, but these two images 
are different. In the south the phenomenon (including thunder-like sounds) lasted 
half an hour and more. The brightness of the TSB was comparable to the Sun. The 
body looked white or bluish.  It had a short tail of the same color. After its flight 
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there remained in the sky iridescent bands resembling a rainbow and stretching 
along the trajectory of the body’s motion. And it flew from south to north.   

In the east the brightness of the flying body was much lower than the Sun.  Its 
color was red, and the shape was that of a ball or “artillery shell” with a long tail. 
Usually eyewitnesses said simply: a “red fiery broom” or a “red sheaf” was flying, 
and it was swiftly moving in the western direction, leaving no trace behind.  The 
duration of this phenomenon did not exceed a few minutes.   

The general scenario of the Tunguska event accepted as self-evident by the 
majority of Tunguska investigators is very simple: one space body flew over 
Central Siberia, generating in its flight a bow wave and performing no maneuvers, 
exploding over the Southern swamp and producing a blast wave.  But when we 
process the eyewitness reports, we obtain, instead of an unambiguous picture of a 
space body arriving from a definite direction, either two bodies flying in different 
trajectories or one body performing various maneuvers – or a combination of these. 
Furthermore, if the TSB was seen at a distance of 1000 kilometers from the 
epicenter it means that it was flying at a small angle with respect to the Earth’s 
surface.  This angle could not have exceeded 10 to 15 degrees, otherwise the 
altitude at which a comet core or an asteroid began to emit light would have been 
too great. But in this case, the speed of the TSB before its explosion (that is, near 
the Southern swamp) could not have exceeded 1 to 2 km/sec, otherwise the body, 
flying in a flat trajectory, would have left in the leveled forest a more pronounced 
trace of its bow wave than it did leave. At this velocity no explosion due purely to 
the kinetic energy of a moving body is conceivable. So the TSB’s explosion must 
have been produced by the internal energy of its substance (chemical, nuclear, or 
other).  

IV. Reconstruction of the Tunguska Event 

It seems conceivable that in the morning of June 30, 1908, two  space objects 
(let’s call them TSB-A and TSB-B) flew over Central Siberia and one of them 
(TSB-A) exploded at Tunguska due to its internal energy, its concentration  
approaching that of a nuclear explosion. The explosion was accompanied by 
ionizing radiation and radioactive fallout. The ionizing radiation induced a 
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magnetic disturbance in the ionosphere, which developed into a local geomagnetic 
storm lasting about five hours. The TSB-B had somehow survived this fiery bath 
and had flown farther west.  

This is a somewhat simplified reconstruction of the Tunguska event – 
although revealing its most essential features. For a more detailed reconstruction 
see: (Rubtsov 2012:272-288). 

V. Conclusion 

One must admit that the reconstructed image of the Tunguska phenomenon 
does not offer a definite answer to the question “What was it?” What is more, none 
of the existing hypotheses fits this image sufficiently well. In particular, the high 
concentration of energy of the Tunguska explosion contradicts the hypothesis of the 
vapor cloud explosion. And an ordinary comet or a stony asteroid seems to be out 
of the question.  

The Tunguska “meteorite” (TSB-A) was a dangerous space body of unknown 
nature. Had it exploded over London or New York an entire city would have been 
destroyed. What kind of body was it? At present we do not know. But we know 
that instead of elements that are prevalent in space – iron, nickel and cobalt, it 
contained titanium, aluminum, ytterbium and gold... The Tunguska space body 
flew at a low velocity and exploded due to the internal energy of its substance, not 
due to the energy of motion. Its explosion had a high concentration of energy, 
approaching that of a nuclear explosion. Also, it was accompanied by ionizing 
radiation and radioactive fallout.  

So, if the TSB was a natural space body, then it means that there exists in 
space another type of dangerous space objects, whose nature remains vague at best. 
Naturally enough, to estimate chances of their collision with our planet and predict 
their coming, it will be needed, first of all, to determine the main properties of these 
space bodies and parameters of their orbits. Until then, the only thing we can say  
about these objects is that they are very different from asteroids and comets.  
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