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Introduction

The June 30, 1908 �Tunguska Event�
(TE), i.e., a �10–15 Mton explosion,
that caused anomalous seismicity, heat
and pressure waves and the destruc-
tion of over 2000 km2 of taiga forest in
the remote Tunguska region of Sibe-
ria, led to the hypothesis that a small
asteroid or comet exploded in the
atmosphere above Tunguska (Kulik,
1940; Florenskij, 1963; Chyba et al.,
1993). Geochemical markers of a
cosmic impact in the Tunguska region
(Longo et al., 1994; Serra et al., 1994;
Hou et al., 1998, 2004; Kolesnikov
et al., 1999, 2003), although compati-
ble with the hypothesis of a cosmic
body impact, are by no means conclu-
sive and several different scenarios
have been proposed for the TE (see
Longo, 2007).
During a 1999 expedition to Tung-

uska, we collected sediment cores
from a small lake (Lake Cheko,
�350 m diameter, Fig. 1), located
�8 km NW of the TE epicentre. A
suggestion by Koshelev (1963) that
Lake Cheko might be an impact crater
was rejected by Florenskij (1963)
because he felt that the several-

metres-thick sediment in the lake indi-
cated a pre-1908 origin. Accordingly,
we started our work on the assump-
tion that Lake Cheko was older than
the TE and that the lake�s sediments
might contain natural tracers of the
1908 explosion because the lake is
close to the epicentre of the explosion
and supplied by a river (River Kim-
chu) that drains some of the devas-
tated region. However, as our study
progressed, we began to question the
alleged age of the lake because sub-
bottom acoustic reflection data indi-
cated that, of a �10 m thick sediment
succession, only the top �1 meter is
laminated, fine-grained lacustrine sed-
iments. Moreover, the lake�s funnel-
like bottom morphology contrasts
with that of thermokarst Siberian
lakes and cannot be explained by
other �normal� erosion-deposition pro-
cesses. These data may indicate that
the Cheko basin is a crater left by the
impact of a cosmic fragment that
survived the main explosion and hit
ground �10 km downrange from the
epicentre (Gasperini et al., 2007). Col-
lins et al. (2008) questioned this
hypothesis mainly because: (i) Lake
Cheko morphology differs from that
of typical impact craters (low depth-
to-diameter ratio and absence of a
rim) and (ii) an accurate age estimate
for the lake formation was lacking.
An answer to the first question could
be found in the nature of the target
that may have caused a substantial

post-impact collapse (Gasperini et al.,
2008).

The origin of Lake Cheko

If the formation of Lake Cheko is
bound to the TE, how were the two
events related? The TE has been
ascribed to a number of alternative
processes, among which the most
plausible are: (a) explosion in the
atmosphere of a small asteroid or
comet or (b) explosion in the atmo-
sphere of gas (methane+CO2+air)
derived from the subsurface and unre-
lated to a cosmic impact. An explosion
in the atmosphere of gases released
from below cannot be excluded; how-
ever, we consider it unlikely, also
because many eyewitnesses saw a fiery
ball in the sky just before the explosion
(Vasilyev et al., 1981). If the TE was
caused by a gas explosion from below,
and Lake Cheko is related to the TE,
then Lake Cheko could mark one of
the sites where the underground gases
were released in the atmosphere. If
instead we admit that Lake Cheko is
connected with the TE and the TE is
due to the explosion of an asteroid in
the atmosphere, its disintegration must
have allowed at least one fragment to
survive and hit ground, triggering the
formation of the Cheko crater.
Numerical simulations of the TE
(Chyba et al., 1993; Artemieva and
Shuvalov, 2007) call for disintegration
and vaporization of the cosmic body in
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the atmosphere, but allow for m-size
fragments to survive and hit ground in
the vicinity of the explosion.
A key question pro or against the

impact hypothesis is the age of the
lake. We address this question in a
study of a 175-cm-long sediment core
(TG-22) collected from Lake Cheko,
which includes grain-size, porosity,
magnetic susceptibility, X-ray radiog-
raphy, organic C and N content, d13C
isotopic ratios, palynology and radio-
metric (210Pb and 137Cs) age determi-
nations.

Methods

Core TG-22 was collected close to the
centre of the lake below 45 m of water
using a 2-m long gravity corer with
plastic liner. X-ray imaging and mag-
netic susceptibility log were carried
out prior to opening. The core was
subsequently sampled each 1 cm.
Grain size analyses were performed
by wet sieving at 250 lm, to separate
organic macroremains. After a
pre-treatment with H2O2 to remove
organic matter, a subsequent wet
sieving was performed at 63 lm to
separate mud from sand. The former
was further subdivided into silt and
clay fractions by using a Micromeri-
tics RX-5000D sedigraph. All concen-
trations and activities were calculated
on a dry weight basis. 137Cs was
measured by gamma spectrometry;
210Pb was determined using alpha
spectrometry through its 210Po daugh-

ter, after chemical extraction. Organic
carbon and nitrogen were determined
using a FISON NA2000 elemental
analyzer. Stable isotopes analyses of
organic C were determined using a
FINNINGAN Delta Plus mass spec-
trometer.
Pollen analyses were carried out on

17 subsamples (spaced 10 cm apart)
following standard treatments (Fægri
and Iversen, 1989) and counting from a
minimum of 500 up to 1000 pollen
grains, excluding fern spores, fungal
spores and algae. We determined also
the abundance of charcoals fragments
in the samples to estimate the fre-
quency of forest fires in the region
around the lake.

Lake Cheko sedimentary record

X-ray radiography and photo images
of core TG-22 (Fig. 2) show an upper
80 cm zone of finely laminated sedi-
ments, underlain by a non-stratified
chaotic unit, with a 20-cm thick tran-
sition zone of homogeneous deposits.
High-resolution seismic reflection pro-
files (Gasperini et al., 2007) imaged
two sedimentary units below the lake
floor, i.e., a 0.5–1 m thick finely lam-
inated lacustrine unit overlaying a
chaotic ⁄massive lower unit. We as-
sume that the two units identified in
the core correspond to the two units
revealed by the acoustic reflection
data throughout the deeper part of
the lake and we used the core to define
their age and depositional environ-
ment.

137Cs and 210Pb radiometric dating
methods

The activity-depth profiles of 137Cs
and 210Pb radionuclides (Fig. 2) were
interpreted as determining the deposi-
tion rate, assuming a constant
flux ⁄ constant sedimentation model
(CF-CS, Robbins, 1978). Radiometric
data are reported with 1r standard
deviation, taking into account propa-
gation of errors from counting statis-
tics and estimated inventories. A CRS
(Constant Rate of Supply) model
(Appleby and Oldfield, 1978) was used
to calculate Sediment Accumulation
Rates (SAR: cm yr)1), and Mass
Accumulation Rates (MAR:
g cm)2 yr)1).
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during the Tunguska99 expedition.
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210Pb concentrations show a typical
exponential decay, reaching equilib-
rium between 100 and 120 cm below
the top (Fig. 2). This level would cor-
respond to �100 years before present.
Assuming a CF-CS model, the 210Pb
concentration curve indicates that the
1908 TE level corresponds to the
change in the sedimentary sequence
80–100 cm below the top of the core.
137Cs was detected only down to 42 cm
below the top. It shows peaks at 5, 18,
25 and 40 cm core depths. The 40-cm
depth level probably represents the
years around 1950 (start of nuclear
tests in the atmosphere). The upper
peak is related probably to fallout from
the Chernobyl event of 1986.
Based on these age determinations,

the core TG-22 sequence can be sub-
divided into an upper, post-TE inter-
val from �80 cm to the top, and a
lower, pre TE interval from �120 cm
down to the bottom of the core, with a
transitional zone from 80 to �120-cm
depth. The estimated average deposi-
tion rate during the last century is
�1 cm yr)1.

Sedimentology

Lake�s sediments are generally dark
brown-blackish in colour. They have
high contents of organic matter and
water, and fine grain size, ranging
from fine-sand to mud (Fig. 2).
Stratigraphic analysis of core TG-

22 shows two main sedimentary facies:
(1) an upper fine-grained, faintly-
laminated, organic-rich unit, with
abundant gas bubbles; (2) a massive
to chaotic unit, containing coarser
grained sediments, vegetation macro-
remnants (herbs and larch cones) and
wood fragments in the lower part of
the core (Fig. 3).
The sediment mainly consists of

sandy-mud (mud fraction ranges from
50% to 83% d.w.); the sand content
increases in the lower unit ranging
from 25% to 60%.
Lower and upper units are sepa-

rated by a �transitional zone� (between
80 and 120 cm) that shows sub-
horizontal layering and is constituted
by coarser-grained sediments (from
silt to fine-sand); the contact between
lower unit and transitional zone is
sharp (Fig. 3).
Deposits from the lower, pre-TE

section appear to be coarser than
those from the upper, post-TE inter-

val, in line with the hypothesis that the
lower section is made of reworked
river sediments, deposited from a
relatively high-energy system capable
of transporting coarser grains. In
contrast, the finer deposits of the
upper section are compatible with
deposition from a low-energy envi-
ronment similar to present-day Lake
Cheko.

Organic nitrogen and carbon

Both organic C and N are more
abundant in the upper, post-TE unit
than in the lower section. The C ⁄N
ratio is rather constant in the upper
sequence, while it displays high ampli-
tude variations in the lower section
(Fig. 2). This distribution is compati-
ble with the upper sediments having
been deposited from a lake with rela-
tively high organic productivity and
deposition rates, vs. a lower section of
reworked river deposits less affected
by biological productivity. We can
speculate that a sharp peak in both
organic C and N content at the
transition from the lower to the upper
section may have resulted from accu-
mulation of organic debris trans-
ported into the Cheko basin by
Kimchu River after the TE devasta-
tion.

Nitrogen and carbon isotopes

While d15N remains about constant
below and above the TE level, d13C is a
few units more negative in the upper,
post-TE sequence than in the lower
zone (Fig. 2). This may reflect
the presence in the upper zone of
d12C-enriched, algal material typical
of lacustrine environments (Shultz and
Calder, 1976; Sherr, 1982; Meyers,
2003).

Pollen analysis

Pollen assemblages confirm the pres-
ence of two different units, above and
below the �100-cm level (Fig. 4). The
upper 100-cm long section, in addition
to pollen of taiga forest trees such as
Abies, Betula, Juniperus, Larix, Pinus,
Picea, and Populus, contains abundant
remains of hydrophytes, i.e. aquatic
plants probably deposited under lacus-
trine conditions similar to those pre-
vailing today. These include both free
floating plants and rooted plants,
growing usually in water up to 3–4
meters in depth (Callitriche, Hottonia,
Lemna, Hydrocharis, Myriophyllum,
Nuphar, Nymphaea, Potamogeton,
Sagittaria). In contrast, the lower unit
(below �100 cm) contains abundant
forest tree pollen, but no hydrophytes,
suggesting that no lake existed then,
but a taiga forest growing on marshy
ground (Fig. 5). Pollen and micro-
charcoal show a progressive reduction
in the taiga forest, from the bottom of
the core upward. This reduction may
have been caused by fires (two local
episodes below �100 cm), then by the
TE and the formation of the lake
(between 100 and 90 cm), and again
by subsequent fires (one local fire in the
upper 40 cm).

Discussion

The results obtained from the study of
Cheko�s core TG-22 can be summa-
rized as follows.

1 Based on 137Cs and 210Pb, the time
of the TE corresponds to the tran-
sition from the finely laminated
upper sequence down to about
80 cm of depth in the core, to the
chaotic unit below about 100 cm.

2 The post-TE sequence, from�80 cm
to the top, consists of laminated,
fine-grained, clay-rich sediment
containing abundant aquatic plant

Fig. 3 Close-up view of core TG-22
showing in detail the texture of the
lower �chaotic� unit. Below the sharp
contact at about 117 cm (black arrow),
we observe sediments and heterogeneous
material such as vegetation macro-rem-
nants and wood fragments mixed in the
lacustrine sediments.
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remains. This upper sequence accu-
mulated at a rate of about 1 cm yr)1

(Fig. 2) by quiet deposition in a body
of water, similar to the present-day
Lake Cheko.

3 The lower, pre-TE, deeper than
�100 cm portion of core TG-22 is
made of non-laminated sandy mud,
coarser and poorer in organic mat-
ter than the post-TE upper deposits.
In contrast to the upper section, it
contains no aquatic plant remains.
These observations suggest that
Lake Cheko did not exist when the
lower pre-TE sequence was depos-
ited. An interval of transition be-
tween the upper post-TE and the
lower pre-TE sections, made of
compact sandy mud deposits, lies
in the 80–100 cm depth interval.

Points (1), (2) and (3) above
imply that Lake Cheko formed at
about the time of the TE. This could
either be considered a coincidence
or we could view it as implying a

cause-and-effect relationship between
the two phenomena.
Let us first consider the �coinci-

dence� hypothesis. Lake Cheko has a
funnel-like morphology, with a diam-
eter of �300 m at 5 m depth level, and
a maximum depth of �50 m near the
centre (Gasperini et al., 2007, 2008).
This morphology is highly unusual. It
is different from that of Siberian
thermokarst lakes and is difficult to
explain through �normal� ero-
sion ⁄deposition processes by a small
meandering river in a relatively low-
energy environment. It hardly could
be a volcanic crater because volcanism
remains unknown in this region since
the Cenozoic and an ancient volcanic
crater would have been filled by sed-
iments long ago. It follows that the
�coincidence hypothesis� requires
really a �double coincidence�: not only
Lake Cheko formed at the time of the
TE (coincidence 1), but also it must
have formed through a highly unusual
process (coincidence 2).

If we exclude the coincidence
hypothesis, we are left with the �cause-
and-effect� hypothesis, namely, the ori-
gin of Lake Cheko is somehow related
to the 1908 TE. Gasperini et al. (2007,
2008) proposed that the formation of
Lake Cheko was caused by the low-
speed impact of am-size fragment, that
upon hitting ground may have trig-
gered a massive release of H2O vapor,
CH4, and CO2, partly from the 25–
30 m thick permafrost layer ubiquitous
in this region. Regardless of whether
this gas releasewas orwas not explosive
(CH4–airmixtures can indeed be explo-
sive), it certainly would have modified
the crater�s dimension and geometry.
Reworking and collapse of the original
�soft� pre-TE river deposits could ex-
plain the absence of an elevated rim
around the crater; this reworked pre-
TEmaterial could represent the chaotic
deposits imaged below the top 1 meter
by acoustic reflection profiles and iden-
tified in the lower pre-TE sequence of
core TG-22.
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Fig. 4 Pollen and micro-charcoal diagram of core TG-22 (selected taxa, pollen sum = total pollen; concentration = n cm)3).
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Conclusion

Analysis of sediments from Lake
Cheko, including geochemistry, 137Cs,
210Pb radioisotopes dating, and pollen
content, together with the funnel-
shaped morphology of the lake�s
bottom and its peculiar acoustic
stratigraphy, are all consistent with
the idea of a very young (�100 years)
lake, filling an impact crater. This
crater could have been produced by
the impact of a small, m-size fragment
of the Tunguska asteroid ⁄comet that
survived the atmospheric blast.
Drilling the centre of the lake could
provide a final test of this hypothesis.
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